# **Activities**





5 m









Fig. 20.74

Q9. Fig. 20.75 shows the plan and elevation of a lean-to roof. Surface A has a pitch of 30°, surface B has a pitch of 45° and surface C has a pitch of 60°.

- Draw the plan and elevation of the roof. (i)
- Develop the surfaces A and B.
- (iii) Find the dihedral angle between the surfaces A and B.

Scale 1:100





Fig. 20.76

Q10. Fig. 20.76 shows the outline plan of a pitch roof. The surfaces A and B have a pitch of 50°. Surfaces C, D and E have pitches of 50°.

- Draw the given plan and project an elevation.
- (ii) Develop the surfaces A and C.
- (iii) Determine the dihedral angle between surfaces A and D and between surfaces B and C.

Scale 1:50

Q11. Fig. 20.77 shows the outline plan of a lean-to roof. Surfaces A and B have a pitch of 45°. Surface C has a pitch of 25°.

- (i) Draw the plan and elevation of the roof.
- (ii) Find the dihedral angle between surfaces B and C.
- (iii) Develop surfaces A and C.

Scale 1:100



Fig. 20.77





Q12. Fig. 20.78 shows the plan and elevation of a lean-to roof with a dormer window and a quarter tower. Surface A has a pitch of 35°. Surfaces B and C have a pitch of 30°.

- (i) Draw the plan and elevation of the roof.
- Find the dihedral angle between surfaces A and B.
- (iii) Develop the surface of roof A.

Scale 1:100

#### INTERSECTING DUCTS AND PIPES

#### Q13. to Q15.

The diagrams show the projections of intersecting ducts/pipes. In each case draw the given views and find the joint line in all views. Make a complete surface development of each ducting piece.



#### Q16. to Q18.

The diagrams show end views of intersecting ducts/pipes. In each case draw the front elevation, end elevation and plan showing the joint line clearly. Develop the surface of part A and enough of the larger duct to show the true shape of the hole to be cut in it.



#### Q19. to Q21.

The diagrams show pipe joints. Draw the given views and find the joint line. Develop the surfaces of part A and part B.



Fig. 20.85

Fig. 20.86

#### Q22. to Q24.

Given the plan and elevation of a hopper/funnel. Draw the given views and make a complete surface development of the object.



Fig. 20.88



Fig. 20.89



A

65

Elevation

Ø50

Fig. 20.90

#### 328

#### Q25. to Q27.

Given the plan and elevation of transition pieces. In each case draw the given views and make a *one*-piece surface development of the object.







Fig. 20.93

Fig. 20.91

## Q28. to Q30.

Make a one-piece surface development of the following transition pieces.







Fig. 20.95



Fig. 20.96

### Q31. to Q33.

Draw the given views and make a full surface development of the transition piece.







Fig. 20.98

Fig. 20.99

#### Q34. to Q36.

The following drawings show projections of transition pieces. Draw the given views and produce a one-piece development of each transition piece.



60







Fig. 20.101

Fig. 20.102

Fig. 20.100





Fig. 20.104

Q37. and Q38.

Draw the given views and make a full one-piece development of each transition piece.

Fig. 20.103

Q39. Fig. 20.105 shows a curved duct being joined by a straight, cylindrical duct.

- (i) Draw the plan and complete the elevation.
- (ii) Draw the complete surface development of the cylindrical duct.





Fig. 20.106

Q40. Fig. 20.106 shows an oblique cylindrical duct penetrated by a square duct.

- (i) Draw the given views and project a plan.
- (ii) Find the joint line in all views.
- (iii) Make a complete surface development of the square duct.
- (iv) Make a complete surface development of the oblique cylindrical duct.